Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717957

RESUMO

This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (µCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and µCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, µCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based µCT could be a useful technique in visualizing biopolymer-based hydrogels.

2.
Plant J ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576267

RESUMO

Little millet (Panicum sumatrense Roth ex Roem. & Schult.) is an essential minor millet of southeast Asia and Africa's temperate and subtropical regions. The plant is stress-tolerant, has a short life cycle, and has a mineral-rich nutritional profile associated with unique health benefits. We report the developmental gene expression atlas of little millet (genotype JK-8) from ten tissues representing different stages of its life cycle, starting from seed germination and vegetative growth to panicle maturation. The developmental transcriptome atlas led to the identification of 342 827 transcripts. The BUSCO analysis and comparison with the transcriptomes of related species confirm that this study presents high-quality, in-depth coverage of the little millet transcriptome. In addition, the eFP browser generated here has a user-friendly interface, allowing interactive visualizations of tissue-specific gene expression. Using these data, we identified transcripts, the orthologs of which in Arabidopsis and rice are involved in nutrient acquisition, transport, and response pathways. The comparative analysis of the expression levels of these transcripts holds great potential for enhancing the mineral content in crops, particularly zinc and iron, to address the issue of "hidden hunger" and to attain nutritional security, making it a valuable asset for translational research.

3.
Foods ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338568

RESUMO

The potential of hyperspectral imaging (HSI) and synchrotron phase-contrast micro computed tomography (SR-µCT) was evaluated to determine changes in chickpea quality during storage. Chickpea samples were stored for 16 wk at different combinations of moisture contents (MC of 9%, 11%, 13%, and 15% wet basis) and temperatures (10 °C, 20 °C, and 30 °C). Hyperspectral imaging was utilized to investigate the overall quality deterioration, and SR-µCT was used to study the microstructural changes during storage. Principal component analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used as multivariate data analysis approaches for HSI data. Principal component analysis successfully grouped the samples based on relative humidity (RH) and storage temperatures, and the PLS-DA classification also resulted in reliable accuracy (between 80 and 99%) for RH-based and temperature-based classification. The SR-µCT results revealed that microstructural changes in kernels (9% and 15% MC) were dominant at higher temperatures (above 20 °C) as compared to lower temperatures (10 °C) during storage due to accelerated spoilage at higher temperatures (above 20 °C). Chickpeas which had internal irregularities like cracked endosperm and air spaces before storage were spoiled at lower moisture from 8 wk of storage.

4.
Heliyon ; 9(11): e22139, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045167

RESUMO

Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK. All varieties of durum wheat were spoiled at the end of five week, and AAC Spitfire and CDC Defy varieties were most affected in nutritional composition and their distribution than AAC Stronghold. Variable response to changes in biochemical and nutrition were found in all three spoiled varieties of the same durum wheat class.

5.
Foods ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959054

RESUMO

Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage. Changes due to spoilage over time were observed in the grain microstructure and its nutrient distribution and composition. This study underscores the critical importance of the initial condition of barley grain microstructure in determining its storage life, particularly under unfavorable conditions. The hulled barley varieties showed more deterioration in microstructure than the hulless varieties of barley, where a direct correlation between microstructural changes and alterations in nutritional content was found. All selected barley classes showed changes in the distribution of nutrients (Ca, Fe, K, Mn, Cu, and Zn), but the two-row AC Metcalf variety exhibited more substantial variations in their nutrient distribution (Zn and Mn) than the other three varieties during storage. The two-row class barley varieties showed more changes in biochemical components (protein, lipids, and carbohydrates) than the six-row class varieties.

6.
Food Chem ; 421: 135661, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094404

RESUMO

It is important to know the mineral distribution in cereal grains for nutritional improvement or genetic biofortification. Distributions and intensities of micro-elements (Mn, Fe, Cu, and Zn) and macro-elements (P, S, K and Ca) in Arborg oat were investigated using synchrotron-based on X-ray fluorescence imaging (XFI). Arborg oat provided by the Crop Development Center (CDC, Aaron Beattie) of the University of Saskatchewan for 2D X-ray fluorescence scans were measured at the BioXAS-Imaging beamline at the Canadian Light Source. The results show that the Ca and Mn were mainly localized in the aleurone layer and scutellum. P, K, Fe, Cu, and Zn were mainly accumulated in the aleurone layer and embryo. Particularly the intensities of P, K, Cu, and Zn in the scutellum were higher compared to other areas. S was also distributed in each tissue and its abundance in the sub-aleurone was the highest. In addition, the intensities of S and Cu were highest in the nucellar projection of the crease region. All these elements were also found in the pericarp but they were at lower levels than other tissues. Overall, the details of these experimental results can provide important information for micronutrient biofortification and processing strategies on oat through elemental mapping in Arborg oat.


Assuntos
Avena , Micronutrientes , Síncrotrons , Raios X , Canadá , Imagem Óptica , Espectrometria por Raios X/métodos
7.
Compr Rev Food Sci Food Saf ; 22(3): 1613-1632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880584

RESUMO

The consumption of plant-based proteins sourced from pulses is sustainable from the perspective of agriculture, environment, food security, and nutrition. Increased incorporation of high-quality pulse ingredients into foods such as pasta and baked goods is poised to produce refined food products to satisfy consumer demand. However, a better understanding of pulse milling processes is required to optimize the blending of pulse flours with wheat flour and other traditional ingredients. A thorough review of the state-of-the-art on pulse flour quality characterization reveals that research is required to elucidate the relationships between the micro- and nanoscale structures of these flours and their milling-dependent properties, such as hydration, starch and protein quality, components separation, and particle size distribution. With advances in synchrotron-enabled material characterization techniques, there exist a few options that have the potential to fill knowledge gaps. To this end, we conducted a comprehensive review of four high-resolution nondestructive techniques (i.e., scanning electron microscopy, synchrotron X-ray microtomography, synchrotron small-angle X-ray scattering, and Fourier-transformed infrared spectromicroscopy) and a comparison of their suitability for characterizing pulse flours. Our detailed synthesis of the literature concludes that a multimodal approach to fully characterize pulse flours will be vital to predicting their end-use suitability. A holistic characterization will help optimize and standardize the milling methods, pretreatments, and post-processing of pulse flours. Millers/processors will benefit by having a range of well-understood pulse flour fractions to incorporate into food formulations.


Assuntos
Farinha , Manipulação de Alimentos , Farinha/análise , Manipulação de Alimentos/métodos , Triticum , Amido , Proteínas de Plantas
8.
Physiol Plant ; 175(2): e13902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36999192

RESUMO

Corn is an economically important yet frost-sensitive crop, injured at the moment of ice nucleation. However, the influence of autumn temperatures on subsequent ice nucleation temperature is unknown. A 10-day chilling treatment under phytotron conditions ("mild", 18/6°C) or ("extreme", 10/5°C) generated no-visible damage but induced changes in the cuticle of the four genotypes in this study. The putatively more cold hardy Genotypes 884 and 959 leaves nucleated at colder temperatures compared to the more sensitive Genotypes 675 and 275. After chilling treatment, all four genotypes displayed warmer ice nucleation temperatures, with Genotype 884 expressing the largest shift to warmer nucleation temperatures. Cuticular hydrophobicity reduced while cuticular thickness remained unchanged under the chilling treatment. By contrast, under five-week field conditions, cuticle thickness increased in all genotypes, with Genotype 256 expressing a significantly thinner cuticle. FTIR spectroscopy revealed increases in the spectral regions of cuticular lipids in all genotypes after phytotron chilling treatment, while those spectral regions decreased under field conditions. A total of 142 molecular compounds were detected, with 28 compounds significantly induced under either phytotron or field conditions. Of these, seven compounds were induced under both conditions (Alkanes C31-C33, Ester C44, C46, ß-amyrin, and triterpene). While clear differential responses were observed, chilling conditions preceding a frost modified physical and biochemical properties of the leaf cuticle under both phytotron and field conditions indicating this response is dynamic and could be a factor in selecting corn genotypes better adapted to avoiding frost with lower ice nucleation temperature.


Assuntos
Gelo , Zea mays , Temperatura , Temperatura Baixa , Genótipo
9.
Plant Methods ; 18(1): 101, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964094

RESUMO

Synchrotron imaging is widely used for research in many scientific disciplines. This article introduces the characteristics of synchrotron X-ray imaging and its applications in agriculture and food science research. The agriculture and food sector are a vast area that comprises of plants, seeds, animals, food and their products; soils with thriving microbial communities; and natural resources such as water, fertilizers, and organic matter. These entities have unique internal features, structures and compositions which differentiate them from each other in varieties, species, grades, and types. The use of a bright and tuneable monochromatic source of synchrotron imaging techniques enables researchers to study the internal features and compositions of plants, seeds, soil and food in a quick and non-destructive way to enhance their use, conservation and productivity. Synchrotron's different X-ray imaging techniques offer a wide domain of applications, which make them perfect to enhance the understanding of structures of raw and processed food products to promote food safety and security. Therefore, this paper summarizes the results of major experiments carried out with seeds, plants, soil, food and relevant areas of agricultural sciences with more emphasis on two synchrotron X-ray imaging techniques: absorption and phase-contrast imaging and computed tomography.

10.
J Exp Bot ; 73(11): 3807-3822, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35298622

RESUMO

De-methyl esterification of homogalacturonan and subsequent cross-linking with Ca2+ is hypothesized to enhance the freezing survival of cold acclimated plants by reducing the porosity of primary cell walls. To test this theory, we collected leaf epidermal peels from non- (23/18 °C) and cold acclimated (2 weeks at 12/4 °C) Japanese bunching onion (Allium fistulosum L.). Cold acclimation enhanced the temperature at which half the cells survived freezing injury by 8 °C (LT50 =-20 °C), and reduced tissue permeability by 70-fold compared with non-acclimated epidermal cells. These effects were associated with greater activity of pectin methylesterase (PME) and a reduction in the methyl esterification of homogalacturonan. Non-acclimated plants treated with 50 mM CaCl2 accumulated higher concentrations of galacturonic acid, Ca2+ in the cell wall, and a lower number of visible cell wall pores compared with that observed in cold acclimated plants. Using cryo-microscopy, we observed that 50 mM CaCl2 treatment did not lower the LT50 of non-acclimated cells, but reduced the lethal intracellular ice nucleation to temperatures observed in cold acclimated epidermal cells. We postulate that the PME-homogalacturonan-mediated reduction in cell wall porosity is integral to intracellular freezing avoidance strategies in cold acclimated herbaceous cells.


Assuntos
Allium , Cálcio , Aclimatação , Cloreto de Cálcio , Parede Celular , Temperatura Baixa , Congelamento , Pectinas , Plantas , Temperatura
11.
Plants (Basel) ; 11(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161367

RESUMO

Cell wall structural modifications through pectin cross-linkages between calcium ions and/or boric acid may be key to mitigating dehydration stress and fungal pathogens. Water loss was profiled in a pure pectin system and in vivo. While calcium and boron reduced water loss in pure pectin standards, the impact on Allium species was insignificant (p > 0.05). Nevertheless, synchrotron X-ray microscopy showed the localization of exogenously applied calcium to the apoplast in the epidermal cells of Allium fistulosum. Exogenous calcium application increased viscosity and resistance to shear force in Allium fistulosum, suggesting the formation of calcium cross-linkages ("egg-box" structures). Moreover, Allium fistulosum (freezing tolerant) was also more tolerant to dehydration stress compared to Allium cepa (freezing sensitive). Furthermore, the addition of boric acid (H3BO3) to pure pectin reduced water loss and increased viscosity, which indicates the formation of RG-II dimers. The Arabidopsis boron transport mutant, bor1, expressed greater water loss and, based on the lesion area of leaf tissue, a greater susceptibility to Colletotrichum higginsianum and Botrytis cinerea. While pectin modifications in the cell wall are likely not the sole solution to dehydration and biotic stress resistance, they appear to play an important role against multiple stresses.

12.
BMC Plant Biol ; 21(1): 446, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610811

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) production decreases under salt stress. Identification of genes associated with salt tolerance in alfalfa is essential for the development of molecular markers used for breeding and genetic improvement. RESULT: An RNA-Seq technique was applied to identify the differentially expressed genes (DEGs) associated with salt stress in two alfalfa cultivars: salt tolerant 'Halo' and salt intolerant 'Vernal'. Leaf and root tissues were sampled for RNA extraction at 0 h, 3 h, and 27 h under 12 dS m- 1 salt stress maintained by NaCl. The sequencing generated a total of 381 million clean sequence reads and 84.8% were mapped on to the alfalfa reference genome. A total of 237 DEGs were identified in leaves and 295 DEGs in roots of the two alfalfa cultivars. In leaf tissue, the two cultivars had a similar number of DEGs at 3 h and 27 h of salt stress, with 31 and 49 DEGs for 'Halo', 34 and 50 for 'Vernal', respectively. In root tissue, 'Halo' maintained 55 and 56 DEGs at 3 h and 27 h, respectively, while the number of DEGs decreased from 42 to 10 for 'Vernal'. This differential expression pattern highlights different genetic responses of the two cultivars to salt stress at different time points. Interestingly, 28 (leaf) and 31 (root) salt responsive candidate genes were highly expressed in 'Halo' compared to 'Vernal' under salt stress, of which 13 candidate genes were common for leaf and root tissues. About 60% of DEGs were assigned to known gene ontology (GO) categories. The genes were involved in transmembrane protein function, photosynthesis, carbohydrate metabolism, defense against oxidative damage, cell wall modification and protection against lipid peroxidation. Ion binding was found to be a key molecular activity for salt tolerance in alfalfa under salt stress. CONCLUSION: The identified DEGs are significant for understanding the genetic basis of salt tolerance in alfalfa. The generated genomic information is useful for molecular marker development for alfalfa genetic improvement for salt tolerance.


Assuntos
Medicago sativa/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Medicago sativa/fisiologia , Estresse Salino/fisiologia , Tolerância ao Sal/fisiologia , Transcriptoma
13.
J Plant Physiol ; 264: 153485, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34358945

RESUMO

Soil salinity is a global concern and often the primary factor contributing to land degradation, limiting crop growth and production. Alfalfa (Medicago sativa L.) is a low input high value forage legume with a wide adaptation. Examining the tissue-specific responses to salt stress will be important to understanding physiological changes of alfalfa. The responses of two alfalfa cultivars (salt tolerant 'Halo', salt intolerant 'Vernal') were studied for 12 weeks in five gradients of salt stress in a sand based hydroponic system in the greenhouse. The accumulation and localization of elements and organic compounds in different tissues of alfalfa under salt stress were evaluated using synchrotron beamlines. The pattern of chlorine accumulation for 'Halo' was: root > stem ~ leaf at 8 dSm-1, and root ~ leaf > stem at 12 dSm-1, potentially preventing toxic ion accumulation in leaf tissues. In contrast, for 'Vernal', it was leaf > stem ~ root at 8 dSm-1 and leaf > root ~ stem at 12 dSm-1. The distribution of chlorine in 'Halo' was relatively uniform in the leaf surface and vascular bundles of the stem. Amide concentration in the leaf and stem tissues was greater for 'Halo' than 'Vernal' at all salt gradients. This study determined that low ion accumulation in the shoot was a common strategy in salt tolerant alfalfa up to 8 dSm-1 of salt stress, which was then replaced by shoot tissue tolerance at 12 dSm-1.


Assuntos
Medicago sativa/metabolismo , Cálcio/análise , Cálcio/metabolismo , Cloro/análise , Cloro/metabolismo , Medicago sativa/química , Medicago sativa/fisiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Potássio/análise , Potássio/metabolismo , Estresse Salino , Tolerância ao Sal , Sódio/análise , Sódio/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671098

RESUMO

Advances in Infrared (IR) spectroscopies have entered a new era of research with applications in phytobiome, plant microbiome and health. Fusarium graminearum 3-ADON is the most aggressive mycotoxigenic chemotype causing Fusarium head blight (FHB) in cereals; while Sphaerodes mycoparasitica is the specific Fusarium mycoparasite with biotrophic lifestyle discovered in cereal seeds and roots. Fourier transform infrared (FTIR) spectroscopy analyses depicted shifts in the spectral peaks related to mycoparasitism mainly within the region of proteins, lipids, also indicating a link between carbohydrates and protein regions, involving potential phenolic compounds. Especially, S. mycoparasitica contributes to significant changes in lipid region 3050-2800 cm-1, while in the protein region, an increasing trend was observed for the peaks 1655-1638 cm-1 (amide I) and 1549-1548 cm-1 (amide II) with changes in indicative protein secondary structures. Besides, the peak extending on the region 1520-1500 cm-1 insinuates a presence of aromatic compounds in presence of mycoparasite on the F. graminearum root sample. Monitoring shift in improved seed germination, fungus-fungus interface through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), and FTIR molecular signatures combined with principal component analysis (PCA) proved useful tools to detect an early mycoparasitism as a vital asset of the preventive biocontrol strategy against plant pathogens.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Germinação , Doenças das Plantas/prevenção & controle , Sementes/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Agentes de Controle Biológico , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Sementes/microbiologia
15.
Methods Mol Biol ; 2156: 141-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607980

RESUMO

Despite the extensive use of synchrotron radiation in material and biomedical sciences, it has only recently been utilized to expand our understanding of plant responses to environmental stress. Recent advances have led to the development of phenotyping platforms to identify chemical and morphological differences in breeding plant material. While these methodologies are applicable for and tested with a variety of abiotic and biotic stresses, they are particularly useful as a first step to identify cold-induced chemical and morphological changes in plants. Here, we describe two methods to determine cold acclimation-induced changes at the cellular and tissue levels. First, we illustrate how to quantify and visualize changes in tissue chemistry using Fourier-transform infrared spectroscopy. Second, we describe how to nondestructively prepare, analyze, and interpret X-ray phase contrast images and render this data as two- or three-dimensional models. While these techniques utilize synchrotron radiation, the methodology and standard practices are applicable for handheld and laboratory bench-top equipment operating with conventional light sources.


Assuntos
Aclimatação , Temperatura Baixa , Fenômenos Fisiológicos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Tomografia Computadorizada por Raios X , Parede Celular , Análise de Dados , Estações do Ano , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
16.
Food Chem ; 309: 125585, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31708344

RESUMO

Seed samples from 117 genetically diverse pea breeding lines were used to determine the robustness of Fourier transform mid-infrared spectroscopy (FT-MIR) for the rapid nutritional profiling of seeds. The FT-MIR results were compared to wet chemistry methods for assessing the concentrations of total protein, starch, fiber, phytic acid, and carotenoids in pea seed samples. Of the five partial least square regression models (PLSR) developed, protein, fiber and phytic acid concentrations predicted by the models exhibited correlation coefficients greater than 0.83 when compared with data obtained using the wet chemistry methods for both the calibration and validation sets. The starch PLSR model had a correlation greater than 0.75, and carotenoids had correlation of 0.71 for the validation sets. The methods implemented in this research show the novelty and usefulness of FT-MIR as a simple, fast, and cost-effective technique to determine multiple seed constituents simultaneously.


Assuntos
Pisum sativum/química , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Carboidratos/análise , Carotenoides/análise , Análise de Alimentos , Ácido Fítico/análise , Proteínas de Plantas/análise , Amido/análise
17.
Plant Cell Environ ; 43(3): 662-674, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759335

RESUMO

Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.


Assuntos
Arabidopsis/genética , Folhas de Planta/genética , Ceras/metabolismo , Arabidopsis/fisiologia , Cromatografia Gasosa , Secas , Genótipo , Umidade , Mutação/genética , Filogenia , Análise de Componente Principal , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico
18.
J Synchrotron Radiat ; 27(Pt 1): 100-109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868742

RESUMO

Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.


Assuntos
Compostos de Alumínio/análise , Raízes de Plantas/química , Espectroscopia por Absorção de Raios X/métodos , Compostos de Alumínio/toxicidade , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Fagopyrum/química , Fagopyrum/efeitos dos fármacos , Pectinas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/química , Poluentes do Solo/toxicidade , Glycine max/química , Glycine max/efeitos dos fármacos , Especificidade da Espécie , Síncrotrons
19.
Plant Physiol ; 181(1): 127-141, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363005

RESUMO

Simple plant cell morphologies, such as cylindrical shoot cells, are determined by the extensibility pattern of the primary cell wall, which is thought to be largely dominated by cellulose microfibrils, but the mechanism leading to more complex shapes, such as the interdigitated patterns in the epidermis of many eudicotyledon leaves, is much less well understood. Details about the manner in which cell wall polymers at the periclinal wall regulate the morphogenetic process in epidermal pavement cells and mechanistic information about the initial steps leading to the characteristic undulations in the cell borders are elusive. Here, we used genetics and recently developed cell mechanical and imaging methods to study the impact of the spatio-temporal dynamics of cellulose and homogalacturonan pectin distribution during lobe formation in the epidermal pavement cells of Arabidopsis (Arabidopsis thaliana) cotyledons. We show that nonuniform distribution of cellulose microfibrils and demethylated pectin coincides with spatial differences in cell wall stiffness but may intervene at different developmental stages. We also show that lobe period can be reduced when demethyl-esterification of pectins increases under conditions of reduced cellulose crystallinity. Our data suggest that lobe initiation involves a modulation of cell wall stiffness through local enrichment in demethylated pectin, whereas subsequent increase in lobe amplitude is mediated by the stress-induced deposition of aligned cellulose microfibrils. Our results reveal a key role of noncellulosic polymers in the biomechanical regulation of cell morphogenesis.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fenômenos Biomecânicos , Parede Celular/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Esterificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
20.
Sci Rep ; 9(1): 1665, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733451

RESUMO

In the present study, FTIR spectroscopy and hyperspectral imaging was introduced as a non-destructive, sensitive-reliable tool for assessing the tripartite kernel-fungal endophyte environment interaction. Composition of coleorhizae of Triticum durum was studied under ambient and drought stress conditions. The OH-stretch IR absorption spectrum suggests that the water-deficit was possibly improved or moderated by kernel's endophytic partner. The OH-stretch frequency pattern coincides with other (growth and stress) related molecular changes. Analysis of lipid (3100-2800 cm-1) and protein (1700-1550 cm-1) regions seems to demonstrate that drought has a positive impact on lipids. The fungal endosymbiont direct contact with kernel during germination had highest effect on both lipid and protein (Amide I and II) groups, indicating an increased stress resistance in inoculated kernel. Compared to the indirect kernel-fungus interaction and to non-treated kernels (control), direct interaction produced highest effect on lipids. Among treatments, the fingerprint region (1800-800 cm-1) and SEM images indicated an important shift in glucose oligosaccharides, possibly linked to coleorhiza-polymer layer disappearance. Acquired differentiation in coleorhiza composition of T. durum, between ambient and drought conditions, suggests that FTIR spectroscopy could be a promising tool for studying endosymbiont-plant interactions within a changing environment.


Assuntos
Fungos/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Sementes/anatomia & histologia , Estresse Fisiológico , Simbiose , Triticum/anatomia & histologia , Resistência à Doença , Germinação , Microscopia Eletrônica de Varredura/métodos , Doenças das Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA